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Abstract Molecular Imaging technologieswill have a profound impact on both basic research and clinical imaging
in the near future. As the field covers many different specialties and scientific disciplines it is not possible to review all in a
single article. In the current article we will turn our attention to those modalities that are either currently in use or in
development for the medical imaging clinic. J. Cell. Biochem. 90: 443–453, 2003. � 2003 Wiley-Liss, Inc.
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The focus of this article will be to review the
novel molecular imaging based contrast agents
that have the greatest potential for use in
clinical medicine in near future.Wewill discuss
how the current modalities that are available
for human use namely, computed tomography
(CT), magnetic resonance imaging (MRI), ultra-
sound (US), single photon emission computed
tomography (SPECT), or positron emission
tomography (PET), and how they can be applied
to the imaging of these new contrast agents.

MRI, US, AND CT

To successfully study specific receptor sys-
tems it is helpful to understand the cells ex-
pressing the receptors and the circumstances
leading to changes in expression [Fischman
et al., 1989]. Any receptors expressed in suffi-
cient quantity (at least 10–50,000 copies/cell)
with sufficiently high affinity for the injected
agent (>10�8 M) can be detected by external

imaging [Blankenberg et al., 2000; Behr et al.,
2001]. In general, radiopharmaceuticals devel-
oped for SPECT and PET have (a) high
specificity (b) sensitivity requiring, (c) minimal
amounts of labeled material �0.1–10 nmoles
per dose as compared with MRI and US, or
iodinated contrast media for CT where concen-
trations ranging from �10 mM to �100 mM are
required for imaging. While SPECT and PET
offer exceptional sensitivity with respect to the
amount of contrast material needed for ima-
ging, they lack the exquisitely high anatomical
spatial resolution of US, CT, andMRI. The high
sensitivity of SPECT and PET to small amounts
of contrast agents and high anatomic resolution
with CT and MRI, however, can be combined
with the current generation of PET/CT [Ketai
and Hartshorne, 2001; Townsend and Beyer,
2002], SPECT/CT [Forster et al., 2003], and
soon PET/MRI [Nishioka et al., 2002] clinical
scanners in which co-registration of radionu-
clide and anatomical images (i.e., fusion ima-
ging) is now possible as shown in Figure 1.

A variety of contrast agents have been
developed for US, CT, and particularly, MRI.
Most MR agents constructed thus far take
advantage of either iron particulates or gadoli-
nium (Gd)-compounds tomodulate signal at the
site or target of interest.Usuallymultiple atoms
of iron orGdare placed onto targetingmolecules
of interest either by attachment to polylysine,
dextran, dendrimer, or coated liposome to
decrease the amount of targeting material
requiredforexternal imaging[Aimeetal.,2002].
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Fig. 1. Positron emission tomography/computed tomography
(PET/CT) scanningwith 18F-fluoro-deoxyglucose (FDG). Coronal
(above) and sagittal (below) tomographic images of non-
enhanced CT, FDG PET, and fusion of CT/PET image data sets
are shown in a 50-year-old male with recurrent lung carcinoma
involving a <1 cm sized malignant lymph node in the anterior
mediastinum marked by cross hairs on all three sets of coronal

and sagittal images. Note themarked focal uptake of FDGwithin
recurrent tumor seen in both the PET and fusion image data sets.
Note the non-specific uptake of FDG within the brain heart and
kidneys, and to a lesser extent the liver, gut, and blood vessels
(i.e., blood pool). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]



Iron nanoparticulates (superparamagnetic
iron oxide particles (SPIOs) or ultra-small
(USPIOs)) are usually stabilized with ami-
nated-cross linked dextrans for in vivo admin-
istration [Kooi et al., 2003; Rydland et al., 2003].
Iron particles act as small permanent magnets
that dephase proton spins in the local micro-
environment thereby causing a local loss of MR
signal in target tissues and cells onT2-weighted
MR pulse sequences. At present these iron
nanoparticles are used primarily as blood pool
or macrophage (liver, spleen, lymph nodes, and
bone marrow) imaging agents. Iron particu-
lates,however, canbeconjugated toanynumber
of peptides, antibodies, enzymes, or fluorescent
probes, and have even been used to track SPIO
labeleddendritic cells in vivo [Lewinet al., 2000;
Weissleder et al., 2000; Josephson et al., 2002;
Lanza et al., 2002]. In near future it should be
possible also to image intracellular production
of metallomelanin, an iron containing protein
whose synthesis is dependent on the expression
of tyrosinase, as a part of reporter gene system
for MR [Alfke et al., 2003].
Alternatively, Gadopentetate dimeglumine

(Gd–DTPA) and other Gd-complexes can also
be used to tag molecules of interest for MR
imaging. Examples of Gd-based agents include
anti-avb3-antibody coated Gd–DTPA liposomes
for MR imaging of tumor angiogenesis [Sipkins
et al., 1998], polyGd–DTPAorGadolinium tetra
azacylcododecane tetraacetic acid labeled anti-
carcino embryonic antigen (CEA)F(ab’)(2) frag-
ments that target colorectal carcinoma [Curtet
et al., 1998], and Gd-labeled mesoporphyrins for
theMRassessment of necrotic non-viable tumor,
infarcted myocardium, and soft tissue abscesses
[Ju Lee et al., 2002; Lee et al., 2003].
MR contrast agents that generate signal

under certain specific physiologic and patholo-
gic conditions are also under development
[Aime et al., 2002]. The best characterized of
these new micro-environment sensitive MR
agents is the Egad–Gd complex [Weinmann
et al., 2003]. TheEgad–Gd complex is composed
of a derivative of Gd–HPDO3A containing a b-
galactose moiety that prevents the access of
water molecules to the paramagnetic center of
the molecule. In the presence of b-galactosidase
encoded by the lacZ genes, the galactose moiety
is removed allowing for the interaction of water
molecules with the Gd-core and the enhance-
ment of MR signal on T1-weighted images.
Plasmids, constructed to include the gene for

b-galactosidase in addition to those for gene
therapy can then be directly imaged in vivowith
MR when followed by intravenous injection of
Egad–Gd complex. Two other more general-
izable enzymatic Gd-based systems have been
developed; the first a Gd–DOTA like monomer
complex bearing a cathecol functionality that
in the presence of peroxidase polymerizes into
paramagnetic MR detectable oligomeric mole-
cules, and the second, insoluble Gd–DTPA like
complexes which when internalized by macro-
phages are hydrolyzed by intracellular ester-
ases into soluble MR detectable molecules.

The development of novelmicro-bubble based
contrast agents for US is currently focused on
blood pool andmacrophage/reticulo-endothelial
system (RES) for liver/spleen/lymph node and
atherosclerotic plaque imaging [Harvey et al.,
2002; Yucel et al., 2002; Hohmann et al., 2003].
Most of these agents are composed of lipid,
albumin, or prefluorocarbon shells encapsulat-
ingmicrobubbles<5 mm in diameter permitting
easy access to all portions of the microcircula-
tion. Because of their size and physical char-
acteristics these agents are confined to the
imaging of the vascular space. There is, how-
ever, the potential of directing biotinylated
coated microbubbles with a number of avidin
labeled molecules including anti-integrin avb3,
anti-P-selectin, and anti-ICAM-1 antibodies
[Lanza et al., 1996; Lindner, 2002]. In contrast
to MR and US, there has been little progress in
beyond the development of lipophilic and nano-
particulate iodinatedagents forbloodpool, liver,
spleen, lymph node, and bone marrow imaging
[Choi et al., 1994; Gazelle et al., 1995; Li et al.,
1996].

PET AND SPECT RADIONUCLIDE IMAGING

Molecular imaging is the natural outgrowth
of the biochemical techniques and radionuclide
imaging devices developed over the past several
decades for the field of Nuclear Medicine. We in
the next section will discuss the most salient of
the newer radiopharmaceuticals that are either
currently available or in route to the Nuclear
Medicine clinic.

Somatostatins

Five different somatostatin receptors (SSTR)-
1 through SSTR-5 [Reichlin, 1983] have been
described. SSTR-2 appears to be expressed in a
majority of human cancers (to varying degrees)
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and on activated lymphocytes. SSTR-1, and to a
lesser extent SSTR-4, have been reported only
in prostate carcinoma, and human normal and
hyperplastic endothelium, but not animals
where SSTR-2 predominates [Curtis et al.,
2000]. Caution therefore, needs to be exercised,
as with all translational research, of interspe-
cies differences in receptor type and expression.

Somatostatin itself plays a role in cancer, in
particular as a tumor growth inhibitor [Lam-
berts et al., 1991; Denzler and Reubi, 1999].
The marked SSTR (mostly SSTR-2) density
found in breast carcinoma, lymphoma, and
neuroendocrine tumors permits clinical SPECT
imaging of primary and metastatic tumor with
currently available radiolabeled somatostatin
analogs namely, 111In-D-Phe-DTPA-octreotide
(Octreoscan, Mallinckrodt Medical, St. Louis,
MO) [Krenning et al., 1993; Vallabhajosula
et al., 1996] and 99mtechnetium (Tc)-depreo-
tide (Neotect, Diatide Inc., Londonderry, NH)
[Breeman et al., 2001]. These agents are also
now being used for the detection of malignant
versus benign lung modules, as well as patho-
logic lymphocytic processes such as lymphoma,
Graves’ opthalmopathy, granulomatous dis-
ease, cardiac allograft rejection, and the forma-
tion of unstable (vulnerable) atherosclerotic
plaques in which T-lymphocytes accumulate
and overexpress the SSTR-2 receptor [Nocaudie
et al., 1999; Balon et al., 2001; Cascini et al.,
2001; Mari et al., 2001].

The SSTR-2 receptor gene has also been suc-
cessfully used as a molecular reporter of the
incorporation and expression ofDNAconstructs

in vivo [Zinn et al., 2000]. It is possible that
SSTR-2 receptor gene expression (imaged with
Octreoscan or Neotect) could also be used as
reporter signal in non-viral molecular delivery
vehicles recently described by Backer et al.
[2002]. This new targeting technology relies on
the non-covalent binding of standardized ‘‘pay-
load’’ modules to targeting proteins expressed
with a docking tag as shown in Figure 2. The
payload modules are constructed by linking
drug or DNA carriers to the adapter protein
capable of binding to the docking tag. The
system described above was originally con-
structed with fragments of bovine ribonuclease
A used as an adapter protein and a docking tag
with VEGF121 as the internalizable targeting
protein, but has been recently humanized for
potential clinical use for imaging or drug
delivery [unpublished data].

The advantage of this new delivery system is
that it avoids the problems of (i) potential
inactivation of cell binding domains by conjuga-
tion, (ii) inevitable heterogeneity of the final
products, (iii) the development of custom con-
jugation procedures for every targeting protein,
and (iv) avoids the need for development of
custom heterobifunctional recombinant antibo-
dies, the previous solution to problems (i), (ii),
and (iii); large molecules which also have the
problem of variable and unpredictable degrees
of internalization into target cells and tissues.
This particular delivery system if coupled to the
SSTR-2 receptor gene (or other safe reporter
gene system)has thepotential tonon-invasively
target a variety of receptors and cellular anti-

Fig. 2. Assembly of complexes for radionuclide imaging.Docking tag is fused to a targeting proteinwithout
affecting targeting epitopes. Radionuclide chelator is conjugated to a standardized adapter protein and
loaded with 99mtechnetium (Tc). Appropriately designed, humanized adapter/docking tag system will be
‘‘non-destructive’’ for targeting proteins, and allow the use of multiple existing and newly discovered
targeting proteins in a rapid and uniform fashion. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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gens, selectively expressed within sites of inter-
est, with high specificity and low background.

Gamma-aminobutyric acid
(GABAA)–Benzodiazepine Receptor Agonists

GABA is the most abundant inhibitory trans-
mitter in the central nervous system (CNS) and
is distributed within GABAergic neurons
throughout the brain [Nutt and Malizia, 2001].
When GABA inhibitory activity exceeds that of
excitatory inputs (mainly glutamatergic) seda-
tion, amnesia, and ataxia appear. Benzodiaze-
pines work by potentiating the effects of GABA
on the chloride ion channel of GABAA–benzo-
diazepine receptor complex. Benzodiazepine
derivatives [11C]flumazenil for PET and
[123I]iomazenil for SPECT that primarily image
the peripheral (as opposed to central) benzodia-
zepine receptors are commercially available
and have been applied to the neuroimaging of
a variety of neurologic disorders including anxi-
ety and temporal lobe epilepsy characterized in
part by decreases in GABAA receptors within
the brain [Matheja et al., 2001; Hammers et al.,
2002; Sata et al., 2002; Sauvageau et al., 2002].
In addition reductions in temporal-mesial
uptake of [123I]iomazenil canbe found in regions
that are structurally intact by MRI in patients
with medically refractory temporal lobe epi-
lepsy. It is now recommended that presurgical
studies with [123I]iomazenil (SPECT) or
[11C]flumazenil (PET) be performed as part of
routine imaging along with MRI.
Interestingly, iomazenil also binds selectively

to activated microglial cells (brain macro-
phages) that have no significant binding of
tracer in their quiescent state. These cells also
make up 1 out of 10 cells in the normal brain.
Activated microglial cells are found in abun-
dancewith the brain (entorhinal, temporoparie-
tal, and cingulate cortex) of patients with
Alzheimer’s presenile dementia and multiple
sclerosis and can be readily imaged, quantified,
and serially followed with [123I]iomazenil
SPECT or [11C]flumazenil PET imaging
[Cagnin et al., 2001; Debruyne et al., 2003;
Versijpt et al., 2003].

Dopamine Transporter (DAT) and
D2 Dopamine Receptor Imaging

The pre-synaptic DAT and the post-synaptic
D2 receptor are two of the most extensively
studied neurotransmitter-receptor systems in
the CNS [Bergstrom et al., 1998; Voruganti

et al., 2001]. Several disease states, including
depression, the antipsychotic drug induced
negativesyndromeofschizophrenia,Parkinson’s
disease, and extrapyramidal Parkinson-plus
neurodegenerative syndromes are character-
ized by focal or regional decreases in DAT and
D2 receptor binding [Ilgin et al., 2001; Prunier
et al., 2001; Winogrodzka et al., 2001; Wong,
2002]. Opiates and Parkinson’s disease have
both been shown to effect the DAT system with
SPECT imaging using two novel radiopharma-
ceuticals; [123I]b-CIT, a cocaine analog with a
binding constant of 1.6 nM for the DAT and
[123I]FP-CIT, a tracer that has been successful
at documenting the accelerated pre-synaptic
dopaminergic degeneration found in Parkin-
son’s patients [Marek et al., 2003]. Diseases
characterized by abnormal increases in D2
receptor binding potential include attention
order-deficit-hyperactivity disorder (ADHD),
mania, and schizophrenia. 123I-iodo-benzamide
(IBZM) or 123I-iodolisuride (ILIS) (lisuride, an
ergolene derivative used in the treatment of
Parkinson’s disease, k¼ 0.27 nM similar to
76Br-bromolisuride used for PET) SPECT.
These studies all show excellent correlations of
D2 binding potential with neuropsychiatric
function and may have an immediate benefit
in the diagnosis and treatment of depression
associated in over a third of patients undergoing
anti-psychotic treatment for schizophrenia.

One fascinating area of clinical research with
DAT and D2 imaging agents has been the study
of substance abuse [Volkow et al., 2003]. Abuse
ofcocaine,methamphetamine,methylenedioxy-
methaphetamine (MDMA), alcohol, opiates,
tobacco, marijuana, and inhalants all appeared
to be associated with abnormalities of the brain
dopamine system, the primary force behind the
reward center in humans. Dopamine producing
cell bodies are located in the midbrain within
the substantia nigra and the ventral tegmental
area with projections to the striatal area that
is known as the reward center, the nucleus
accumbens. All abused substances despite dif-
ferent mechanisms of action serve to increase
synaptic levels of dopamine. Chronic substance
abusers have stimulant-induced highs asso-
ciated with increases in brain dopamine but
abnormally low numbers of dopamineD2 recep-
tors at rest asmeasured by the PET radioligand
11C-raclopride [Doudet et al., 2003]. 11C-raclo-
pride is a radiopharmaceutical that binds to the
post-synapticD2/3 receptors and therefore is an
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indirect indicator of endogenous concentrations
of dopamine. This effect coupled to decreases
in dopamine release in response to chemical
stimuli leads to the compulsive drug seeking
behavior in chronic substance abusers and is an
active area of neuro-pyschiatric investigation.

Estrogen and Progesterone

Evaluating the status of estrogen receptors
can be helpful in defining a treatment strategy
in patients with breast cancer. In the absence of
imaging, receptor status is estimated by multi-
ple biopsies of the primary tumor and regional
lymph nodes [Rose et al., 1985]. Both fluorine
(F)-18 estrogen analogs [McGuire et al., 1991]
and iodinated compounds have been synthe-
sized for PET imaging [Rijks et al., 1998]. An
iodinated estrogen analog, 123-labeled cis-
11beta-methoxy-17alpha-iodovinyl estradiol,
was successful in the determination of estrogen
receptor status in a study of 22 women with
primarybreast carcinomausingbothplanarand
SPECT radionuclide imaging [Bennink et al.,
2001]. Progesterone receptor SPECT imaging
with a progesterone analog, Z-[123I]IPG2, may
alsobepossible innear future [Rijks etal., 1998].

Imaging of the avb3 Integrin

The integrins, a family of heterodimeric endo-
thelial cell membrane proteins, serve as adhe-
sion receptors for extracellular matrix proteins
that contain exposed arginine, glycine, and,
aspartate (single letter coding RGD) amino acid
sequences [Ruoslahti andEngvall, 1997]. These
include laminin, fibronectin, collagens, and
vitronectin that help form blood vessels. The
most abundant integrin expressed on the sur-
face of proliferating endothelial cells is the avb3
receptor [Brooks et al., 1994]. In the adult
human the avb3 integrin has a limited tissue
distribution. It is not expressed on quiescent
epithelial cells and appears atminimal levels on
smooth muscle cells. In contrast, both activated
endothelial cells in tumor capillaries [Eliceiri
and Cheresh, 1999], and some tumor cells
[Cheresh, 1991] express high levels of avb3.

The cyclic pentapeptide cyclo(-Arg-Gly-Asp-
D-Phe-Val-) has been identified as a potent
(kd< 10 nmol/L) inhibitor of avb3 integrin bind-
ing to extracellular matrix proteins [Pfaff et al.,
1994]. Modifications of this peptide at position
four or five have allowed radiolabeling with
iodine for SPECT, and F-18 for PET imaging
[Haubner et al., 2001]. Contrast between tumor

and normal tissues (especially liver) has been
since improved by addition of sugar to the amino
acids of the peptide [Haubner et al., 1999].
Radiolabeled RGD-peptides have been recently
used to image avb3 expression in tumor prior to
the administration of avb3 antagonists such as
EMD-121974 to allow selection of patients enter-
ing clinical trials. These peptides in near future
will be used to assess the effectiveness of avb3
integrin blockade by specific doses of other avb3
antagonists.Thisapproachwill permit optimiza-
tion of dose for a specific patient and tumor type.

Hypoxia

Angiogenic factors, including vascular endo-
thelial growth factor (VEGF), are induced by
tissue hypoxia [Brogi et al., 1994]. The amount
of tumor hypoxiamay therefore be related to the
amount of angiogenesis. One of the effects of
successful anti-angiogenic drug therapy is a
reduction of blood supply to the tumor, which
increases hypoxia. Hypoxia imaging can there-
fore be used in two different ways: to study
angiogenesis itself and to determine the efficacy
of drugs. Nitroimidazoles are a class of com-
pounds that undergo biochemical reduction
forming covalent bonds to intracellular protein
thiols thus trapping the tracer in viable cells
with abnormally low oxygen concentrations
[Chapman et al., 1983]. In normoxic condi-
tionshowever, these compoundsenterand freely
leave the cell unmodified thus distinguishing
normal from hypoxic tissues. Misonidazole
analogs and 2-nitroimadazole analogs have
been labeled with 123I and 99mTc for SPECT,
and F-18 for PET imaging of hypoxia. These
agents have demonstrated increased uptake in
hypoxic and low flow ischemic myocardium and
brain as well as in tumors [Parliament et al.,
1992; Ballinger et al., 1996; Cook et al., 1998;
Melo et al., 2000; Markus et al., 2002; Tolvanen
et al., 2002; Hoffend et al., 2003; Song et al.,
2003]. 99mTc labeled HL91 and BRU 59-21 as
well as F-18 labeled fluoromisonidazole (18F-
FMISO) have been recently been used to study
temporal changes in tumor hypoxia in patients
undergoing radiation and chemotherapy for
primary and recurrent squamous head and
neck carcinoma [Rischin et al., 2001; Van De
Wiele et al., 2001; Hoebers et al., 2002].

Imaging Apoptosis

Apoptosis, also known as ‘‘programmed cell
death’’, was named for the series of character-
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istic energydependent biochemical andmorpho-
logic changes that a cell undergoes as it commits
to its own destruction and removal [Allen et al.,
1997]. One of the earliest detectable changes in
the apoptotic cascade is the externalization of
phosphatidylserine (PS) due to the enzymati-
cally controlled redistribution of PS from the
inner to outer leaflet of the plasma membrane
phospholipid bilayer [van Engeland et al.,
1998]. Annexin V, an endogenous human pro-
tein, binds specifically to membrane bound PS,
which is externalized on the cell surface [van
Heerde et al., 1995]. Annexin V, because of its
nanomolar affinity for PS, has been used in the
flow cytometric detection of apoptotic cells
in vitro, in vivo in animal models, and most
recently in humans for the detection apoptosis
and necrosis found in acute cardiac transplant
rejection [Narula et al., 2001], tumor response
to chemotherapy [Belhocine et al., 2002], and
acute myocardial infarction [Thimister et al.,
2003]. While annexin V has been labeled with
99mTc for SPECT imaging in humans, in near
future it should be possible to label annexin V
with 18F, allowing higher resolution PET ima-
ging, or via the substitution of 94mTc (a positron-
emitting Tc isotope) using existing 99mTc pro-
tein labeling technologies [Tanaka et al., 1996].
MR techniques can also be used to directly

detect apoptosis using suppressed lipid pro-
ton spectroscopic pulse sequences that can
detect cells undergoing apoptosis both in vitro
[Blankenberg et al., 1997] and in vivo
[Hakumaki et al., 1999]. Cells undergoing
apoptosis have an associated increase in mem-
brane and cytoplasmic neutral mobile lipid
droplets composed of polyunsaturated fatty
acids, cholesterol esters, and triglycerides [Al-
Saffar et al., 2002; Ferretti et al., 2003]. Outside
the brain, however, water suppressed lipid
proton MR spectroscopy remains a challenge
due to physiologic motion and the non-specific
‘‘bleeding in’’ of lipid signal from adipose tissue
as well as the low signal to noise and relatively
poor spatial resolution of the technique.

Imaging of Cellular Stress With Annexin V

New data suggest that the PS expression can
occur with non-lethal cell injury prior to the
irreversible morphologic changes such as DNA
fragmentation [Lejeune et al., 1998; Hammill
et al., 1999; Furukawa et al., 2000; Lin et al.,
2000; Maiese and Vincent, 2000; Martin et al.,

2000; Geske et al., 2001; Yang et al., 2002].
These in vitro studies showed that intermediate
levels of PS exposurewere noted in cells with no
othermorphologic features of apoptosis could be
readily reversed upon removal of physiologic
stressors such as nitric-oxide, p53 activation,
allergic mediators, and growth factor depriva-
tion. Studies of the surfaces of tumor endothe-
lial cells also showed that PS expression could
be reversibly increased by exposure to hypoxia/
reoxygenation, acidity, thrombin, inflamma-
tory cytokines, and hydrogen peroxide, all
factors that are variably present in tumors,
without inducing apoptosis [Ran et al., 2002].
Annexin V could therefore be useful as an im-
aging marker of tumor vessels. Thimister’s
clinical study found that annexin V localization
partially resolved by day 3–4 and completely by
day 8 in regions of ischemic injury following
acute myocardial infarction [Thimister et al.,
2003]. These results suggest that either injured
cells that concentrated tracer were removed
from the ischemic zone or the recovery of these
cells in terms of both function and viability with
loss of PS positivity. The reduction of perfusion
abnormalities with restoration of regional wall
motion 1 week following infarction suggests the
latter explanation. If true then annexin V
imagingmaybe vastly more sensitive to cellular
stress than previously thought and maybe a
true marker of tissues at risk that have the
potential for salvage with prompt therapeutic
intervention [Strauss et al., 2000; Narula and
Strauss, 2003].
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